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Abstract

The inability to understand and control the ADMET
properties of molecules is an important reason why
many candidate drugs fail late in the development
pathway. Unfavorable pharmacokinetics, metabolism
or toxicity, for example, can cause development candi-
dates to be dropped. These failures are expensive and
they contribute to the diminishing efficiency of the
pharmaceutical industry. In silico models of ADMET
properties allow these properties to be considered at
an early, less costly stage, and should reduce the
number of late-stage development candidates which
fail. ADMET properties are multifactorial and complex,
requiring very flexible methods to build predictive in sil-
ico models. This review summarizes the contribution
neural networks are making to the development of
useful ADMET models.

Introduction

In a recent perspective article on the productivity of
the pharmaceutical industry, Booth and Zemmel (1)
examined six key reasons why the productivity of the
industry has declined markedly over the last three
decades. They identified one of the key causes of the

decline to be poor chemical library design, resulting in
poor pharmacokinetic profiles. It has become increasing-
ly clear over the past decade that drug action is truly com-
plex, and discovery paradigms that take into account the
so-called ADMET (absorption, distribution, metabolism,
excretion and toxicity) properties of candidate drugs are
required. In earlier times, there was substantial focus on
the target potency of drug leads and insufficient attention
to how they will behave in a complex, biological in vivo
system. Consequently, in the last 10-15 years intense
effort has been focused on ways to determine experi-
mentally how drug leads will behave in living systems.
This has led to the development of rapid surrogate high-
throughput assays for properties like phase | metabolism,
blood-brain partition, protein binding, etc.

Major research efforts have focused on simulating
ADMET properties of molecules. Clearly, if good in silico
models were available for the important ADMET proper-
ties, it would be possible to focus early lead discovery into
chemotypes with more “drug-like” properties, and reject
those likely to be problematic in the later phases of drug
development. As useful as rapid in vitro screening meth-
ods are, they cannot be applied when the leads are virtu-
al, i.e., designed or derived by computational means.
Prediction of adverse ADMET properties can eliminate
candidates before they are synthesized. The expectation
is that in silico methods will reduce the large percentage
of late-stage development compounds which fail due to
ADMET properties, estimated to be as high as 90%.
Given the amortized cost of getting a new drug to market
of almost USD 900 million (2), any reduction in failure at
the late, expensive end of the development process can
generate large savings. Consequently, the modern drug
discovery catchcry is “fail early, fail cheap”. Ekins sum-
marized a suite of computational ADMET endpoints that
are desirable in drug discovery (3). His primary models
are solubility, absorption, mutagenicity, bioavailability,
metabolic stability, blood-brain barrier (BBB) permeability,
cardiac toxicity (nERG) and plasma protein binding.

Modeling via a variety of approaches
ADMET processes are very complex and are difficult

to model or simulate by computational methods. A wide
variety of approaches must be adopted, ranging from
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quite precise reductionist, 3-dimensional (3D) modeling
studies of the interactions of drugs with various isoforms
of cytochrome P-450 (CYP), through pharmacokinetic
compartment modeling methods, to pattern recognition
and artificial intelligence methods which view processes
as complex systems and attempt to model their emergent
properties. However, the focus of this review is the appli-
cation of specific, model-free, nonlinear methods to mod-
eling ADMET properties of small molecules such as hits,
leads, drug candidates and drugs. We will summarize
recent research that employs neural networks to this end.
Such approaches are essentially pattern recognition and
are useful for devising robust, predictive models of partic-
ular ADMET properties. In almost all cases, the methods
attempt to find a relationship between the molecular prop-
erties and structures of drugs or drug leads and a specific
ADMET property such as blood-brain partitioning. There
are recent reviews on the application of neural networks
to life sciences and to several other areas related to drug
discovery and development, such as chemistry, structure-
activity mapping, database mining, molecular diversity
and combinatorial library design (4-11).

Properties of neural networks

Neural networks are mathematical structures based
broadly on the neural processes in the brain. Many types
of neural networks have been devised and have been
applied to a diverse selection of scientific and commercial
applications. In the most general form they consist of a
network of nodes and connections. The way the nodes
are linked by the connections, the arrangement or archi-
tecture of the nodes and the nature of the transfer func-
tions that the nodes apply distinguishes many of the types
of neural networks. Two types of neural networks have
dominated research into ADMET modeling thus far — the
feed-forward, backpropagation neural network and the
Kohonen net or self-organizing map (SOM). Backpro-
pagation neural networks are essentially very general
regression methods and are mainly used to develop
quantitative models. Kohonen networks are a type of non-
linear mapping method and are used to cluster or classify
molecules.

Backpropagation neural networks

Backpropagation neural networks are “universal
approximators” intrinsically capable of modeling any con-
tinuous function to an arbitrary degree of precision given
suitable training data. They are model-free (not based on
an internal model of a process), nonlinear, and are good
at pattern recognition. These are excellent characteristics
for modeling complex systems like living organisms, as
they do not rely on understanding the processes “inside”
in order to make good predictive models. They have been
quite successful in building predictive models of in vivo
biological responses.

Neural networks in ADME and toxicity prediction

Backpropagation neural networks (Fig. 1) are super-
vised regression methods that are trained using a data
set in which the property to be modeled is known. The
trained model can then be used to predict the required
property for molecules not used in training. Information
for each molecule in the training set is presented in turn
to the input nodes and propagated via the connections to
the hidden layer neurode processing elements. The
weighted sum of the connections to each hidden layer
node is processed by a nonlinear (usually sigmoidal)
transfer function in each node, then passed on to the out-
put node. Training occurs by comparing the response
from the output node with the known response and prop-
agating back the error through the network to provide a
signal used to alter the weights and minimize the error.

Several authors have recently reviewed the applica-
tion of backpropagation neural networks to drug discov-
ery and development. Agatonovic-Kustrin and Beresford
discussed potential applications of neural networks to the
pharmaceutical sciences, ranging from interpretation of
analytical data and drug and dosage form design, through
biopharmacy to clinical pharmacy (12). Terfloth and
Gasteiger reviewed how neural networks can be applied
to rational drug design, gene prediction, locating protein-
coding regions in DNA sequences, 3D structure align-
ment, pharmacophore perception, docking of ligands to
receptors, automated generation of small organic com-
pounds, and the design of combinatorial libraries (13).
Ichikawa, as well as Yamashita and Takayama, have car-
ried out mathematical analyses of neural networks and
reviewed their application to optimization and prediction
in pharmaceutical applications (14, 15). They proposed a

Output layer

Hidden layer

Data inputs

Fig. 1. A typical three-layer backpropagation neural network.
Data for each molecule in the training set are applied in turn to
the input nodes and propagated via the links to the hidden layer
nodes. The weighted sum of connections to each hidden layer
node is then modified by the transfer function inside the hidden
layer node to produce the output of that node. The weighted sum
of all hidden layer connections is applied to the output node. The
transformed output of this node is compared with the known
response variable (property being modeled) and the difference
propagated back though the network to generate a correction to
the connection weights, which reduces the error.
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Fig. 2. A typical Kohonen net or self-organizing map (SOM). This
example shows a Kohonen network trained with seven selected
descriptors for cytochrome substrates. The map is color coded
according to density of compounds and shows clustering of
substrates and inhibitors into “islands”. The SOM projects data
from a higher dimensional space onto a 2D map, preserving the
distances between objects. Although drawn flat here, the map is
actually toroidal so that the top and bottom edges are joined, as
are the left and right edges (from Ref. 91; reproduced with per-
mission from the American Chemical Society).

descriptor-mapping method to find nonlinear relationships
between the network outputs and descriptors. Winkler
and Burden published a general review of the application
of neural networks to combinatorial discovery and
ADMET modeling (6).

Self-organizing maps/Kohonen nets

Self-organizing maps (SOMs), also called Kohonen
nets, are another type of neural network whose main use
is in clustering and classification. Kohonen mapping is an
unsupervised procedure for comparing and classifying
molecular data sets. Each chemical compound is repre-
sented as a point in the hyperspace defined by the mole-
cular descriptors used. The SOM projects the multidi-
mensional hyperspace onto a 2-dimensional (2D) map
while preserving the order of distances between the
points in a nonlinear way. An example of an SOM is given
in Figure 2.

Gasteiger’s group has done leading work on the appli-
cation of SOMs to pharmaceutical research and has writ-
ten several reviews summarizing the application of SOMs
to pharmaceutical discovery and development (e.g., 16).
Polanski has employed a SOM network to map pharma-
cophores, discover similarity relationships and simplify
the understanding of how descriptor hyperspace may
influence drug properties (17). Kirew et al. have
employed SOMs in automated data classification (18).
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These maps are often able to cluster compounds accord-
ing to the mode of action or target of the drug. Zupan has
compared the performance of a multibranching decision
tree with a Kohonen neural network (19). The method is
capable of mapping millions of multidimensional objects
like spectra, structures, time series of process variables,
multicomponent analyses of food or pharmaceutical prod-
ucts. Bayada and coworkers have used SOMs to distin-
guish between diversity and representativity (20), and
Bernard et al. used SOM as an unsupervised procedure
for comparing molecular databases (21). The aim of their
work was to apply SOM to the study of the overlapping of
two databases to obtain information about the extent of
their molecular diversity. The results obtained indicated
that SOM can be used for the search for new leads
among available databases and the exploration of new
structural domains for a given biological activity. Anzali
and colleagues also reviewed the application of SOM to
pharmaceutical discovery, with a focus on modeling of
chemical libraries (22).

Problems with neural nets

Like all other regression techniques, neural networks
can be overfitted (too many adjustable weights compared
with the number of molecules in the training set) and can
generate chance correlations (see below). They can also
be trained for too long (overtraining), which results in
them memorizing noise as well as signal in the data, with
subsequent degradation in their predictive abilities. Most
backpropagation neural networks avoid overtraining by
stopping the training when the error in a separate “valida-
tion” data set reaches a minimum. Overfitting is usually
avoided by using a neural network architecture (the num-
ber of hidden layers and numbers of nodes in each hid-
den layer) that is not too complicated. However, opti-
mization of the neural network architecture within these
constraints can still be a time-consuming, trial-and-error
process. Manallack and Livingston reviewed the prob-
lems of neural networks in pharmaceutical research and
concluded that they live up to their promise (23). They
emphasized that one of the drawbacks of supervised
learning methods is the danger of chance effects. They
also investigated the potential for chance correlations in
statistical treatments using neural networks. The group
used random numbers as input data and found that net-
works were able to train successfully and reproduce the
values of a random target. They proposed guidelines to
minimize chance effects (24).

Bayesian neural nets

One way to improve the performance of backpropa-
gation neural networks and avoid most of their problems
is to use regularization. This involves adding a weight
penalty term to the cost function that is minimized when
the neural network trains. In unregularized regression the
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cost function is simply the square of the error between the
network or regression output and the known value for the
output. By applying a Bayesian framework to this regular-
ization process, one can find the optimum balance
between variance (where an overly complex model fits
the noise as well as the underlying relationship) and bias
(where the model is too simple to capture the complexity
of the underlying relationship in the data). Bayesian reg-
ularization produces the optimum, parsimonious model,
in essence, automatically invoking Occam’s Razor. An
additional benefit is that training can be stopped when the
evidence for the model is a maximum, obviating the need
for a validation set. All available data can be used in the
model.

Winkler and Burden first described the use of
Bayesian regularized artificial neural networks (ANN) in
quantitative structure-activity relationship (QSAR) model-
ing and drug discovery (25, 26). Shah et al. employed a
Bayesian neural network to distinguish between drugs
and nondrugs, using a commercial drug database as a
surrogate for drug-like molecules and the Available
Chemicals Database (ACD) as a surrogate for non-drug-
like molecules (27). Their best results correctly predicted
over 90% of the compounds in the drug database while
classifying about 10% of the molecules in the ACD as
drug-like. Bate ef al. used Bayesian methods to analyze
a database containing nearly 2 million reports of adverse
drug reactions (ADR) held by the Uppsala Monitoring
Center (28). They employed various computational
approaches to extract signals from the database. A Baye-
sian confidence propagation neural network (BCPNN)
was developed to manage large data sets and find drug-
ADR combinations that are highly associated. The model
was validated using a quarterly ADR update that identi-
fied 1,004 suspected drug-ADR combinations. Of these,
307 were potentially serious ADRs, 53 of which were
related to new drugs.

Training data and representation
of molecular structure

Importance of data

To build the most useful, predictive models of ADMET
endpoints it is clearly important to have a large training
set consisting of a diverse group of chemicals whose end-
points have been measured. Although the high-through-
put screens for in vitro ADMET properties that have been
developed by the pharmaceutical industry can generate
large volumes of useful data, they are not accessible to
those outside of the industry who are developing new
modeling tools. Clearly there is some very good research
into these areas in drug company laboratories, but the
development of these methods and models is limited by
the preferences and expertise of the individual
researchers in the group. This nexus is one of the major
impediments to the development of better ADMET mod-
eling tools and predictive models.

Neural networks in ADME and toxicity prediction

Molecular representations (descriptors)

Once a good training set is available, it is very impor-
tant to know how to convert the molecules in the set into
mathematical representations used in the modeling
process. If this is done poorly, low-quality models will
result. It is possible to calculate thousands of molecular
descriptors, but many of these are not informative, or are
highly correlated with other descriptors and contain simi-
lar information. Inappropriate choice of descriptors (math-
ematical representations of molecular properties), espe-
cially from a large pool of possible descriptors, can result
in chance correlations arising, yielding models with little
or no predictive ability. Fortunately, methods exist for
determining the probability of chance correlations so they
can be avoided with care (29).

Many descriptors were derived for QSAR modeling, a
technique for building a wide variety of models of biologi-
cal and physicochemical endpoints. Most of the work
summarized here will involve the use of QSAR methods
in one form or another. The QSAR method essentially
involves finding a complex, usually nonlinear, relationship
between the molecular properties of compounds in the
training set and the biological or physicochemical proper-
ty that each molecule exhibits in an assay or measuring
system. As discussed below, neural networks are an
extremely good way of building QSAR models. QSAR
methods have been well described and reviewed in
recent articles so a description will not be repeated here.
Winkler and colleagues have written accessible reviews
that introduce the concepts behind QSAR, point out prob-
lems that may be encountered, suggest ways of avoiding
the pitfalls and introduce several exciting new QSAR
methods discovered during the last decade (4-6).

Often simple molecular descriptors can contain quite
rich embedded information that can be extracted by a
universal approximator like a neural network. Burden
reported how simple descriptors based on atom environ-
ment counts can give good models for physicochemical
and biological target data (30). Winkler and Burden
recently reviewed new developments in descriptor types
(31). Until recently, QSAR analyses have used relatively
simple descriptors based on substituent constants (e.g.,
Hammett constants, pi or molar refractivities), physico-
chemical properties (e.g., partition coefficients) and topo-
logical indices (e.g., Randic and Weiner indices). New
representations have been devised based on atom prop-
erties, eigen values of molecular matrices, E-state fields,
topological autocorrelation vectors and various molecule
fragment-based hash codes.

Gasteiger has reviewed the role of molecular descrip-
tors in modeling of ADMET properties (32). Estrada has
reviewed the use of topological indices in drug design and
development, and summarized the most recent advances
in this field (33, 34). Huuskonen et al. reviewed the role of
the log of the partition coefficient between octanol and
water (logP) as a useful parameter to correlate transport
properties of drugs, model interactions between drugs
and receptors, and map changes in the structure of drugs
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with various biochemical or toxic effects (35). Hall and
Kier introduced electrotopological state (E-state) indices
for molecular structure description in which both elec-
tronic and topological characteristics are combined (36).
E-state indices can be used to model many ADMET prop-
erties, including solubility and logP.

Descriptor selection

Several statistical methods have been used to select
the appropriate molecular descriptors for model building.
Traditionally, methods such as forward-selection/back-
ward-elimination methods, principal components analysis
and partial least squares (PLS) were employed. More
recently, methods from artificial intelligence and complex-
ity theory have been employed. Genetic algorithms have
been a popular method of finding an optimum set of
descriptors for modeling of properties. For example, Yasri
and Hartsough developed a novel QSAR technique that
used a genetic algorithm to preselect descriptors from a
pool and neural networks that could dynamically modify
its architecture to build optimum models (37).

However, many of these variable selection or reduc-
tion methods are linear. As the relationships being mod-
eled are often nonlinear, a nonlinear variable selection or
reduction method is preferable. Burden and colleagues
employed a Bayesian method called automatic relevance
determination (ARD) to prune out uninformative descrip-
tors and to help interpret their neural net models (38). The
ARD method ensures that irrelevant or highly correlated
indices used in the modeling are ignored and gives a rel-
ative weighting for the importance of each descriptor to
the model. Agrafiotis and Lobanov reviewed dimensional-
ity reduction techniques from the statistical literature, mul-
tidimensional scaling and nonlinear mapping to repro-
duce the topology and structure of the data space in a
faithful and unbiased manner (39). Because these meth-
ods can be computationally demanding, these authors
developed a novel approach that combines conventional
nonlinear mapping techniques rooted on the principle of
probability sampling, with feed-forward neural networks to
build models orders of magnitude larger than those
accessible with conventional methodologies.

Predictive versus interpretive models

The focus of model building can be interpretation or
prediction. Interpretation involves dissecting the model to
learn more about the interaction of a set of molecules with
a target. Interpretation is facilitated by data of very high
quality, descriptors that are easily mapped back into
molecular features familiar to synthetic chemists, and a
mapping method in which the form of the model and the
contribution of each descriptor to the model are transpar-
ent. Predictive models often involve much larger training
sets, often of lower quality (from high-throughput screens,
for example), computationally efficient descriptors and
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less transparent mapping methods. Predictive methods
aim to give the best estimate of a property for a molecule
not yet synthesized and to assist in prioritizing lead dis-
covery. Most of the models discussed here will be predic-
tive models that have been generated using neural net-
works.

Application of neural networks to modeling specific
ADMET properties

Drug-likeness

One of the first and most widely accepted rules for
accounting for ADMET properties was the “Rule of Five”
proposed by Lipinski et al. (40). The success of this para-
digm stimulated research into factors distinguishing drugs
from nondrugs. Neural networks have been employed in
several recent studies of drug-likeness. Walters and
Murcko reviewed recent developments in combinatorial
chemistry and high-throughput screening and automated
methods of determining which compounds from a library
should be synthesized and screened (41). Methods range
from simple counting schemes to sophisticated machine
learning techniques such as neural networks. While many
of these methods perform well in validation studies, the
field is still new.

Murcia-Soler et al. used topological and structural
descriptors and a backpropagation neural network to dis-
criminate general pharmacological activity, including
drug-like propensity (42). Sadowski and Kubinyi devel-
oped a scoring scheme for the classification of molecules
into drugs and nondrugs (43-45). They used large data-
bases of drugs and nondrugs, atom type descriptors, and
trained a backpropagation neural network to classify mol-
ecules. Their methods correctly classified about 80% of
compounds in sample databases and allowed the drug
character of combinatorial libraries to be optimized.
Frimurer et al. also used a backpropagation neural net-
work, 2D descriptors and the MACCS Drug Data Report
(MDDR) and ACD databases to classify compounds into
“drug-like” and “nondrug-like” classes (46). The method
correctly assigned 88% of the compounds in both MDDR
and ACD and gave a much better prediction performance
than the “Rule of Five”, which accepted 74% of the ACD
compounds and only 66% of those in MDDR. Bruestle
and coworkers derived a set of descriptors from semiem-
pirical MO (AM1) calculations and used the World Drug
Index and Maybridge databases as surrogates for drug-
like and nondrug-like compounds (47). They trained a
Kohonen net for the entire Maybridge data set, and then
projected the drug database onto the resultant map,
resulting in a clear distinction between drugs and non-
drugs and also between hormones and other drugs. In
another study, Shah et al. used two different sets of
1-dimensional (1D) and 2D descriptors and a Bayesian
neural network to distinguish between drugs and non-
drugs (27). Their models correctly predicted over 90% of
the compounds in the Comprehensive Medicinal
Chemistry database to be drug-like, while classifying
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about 10% of the molecules in the ACD as drug-like. They
tested the generalization ability of the models using the
MDDR database and predicted roughly 80% of the mole-
cules in the MDDR to be drug-like. They proposed using
the models to design combinatorial libraries.

Zernov et al. used another machine learning method
called Support Vector Machines (SVM), a powerful clas-
sification and regression tool, to determine drug-likeness
(48). They compared SVM with well-known neural net-
work techniques to predict drug-likeness and agrochemi-
cal-likeness for large compound collections. For their data
set they found that SVM outperforms various neural net-
works using the same set of descriptors. Similar results
were reported by Byvatov et al., who also used SVM and
ANN to classify compounds into drug/nondrug classes
(49). They found that the SVM classifier yielded slightly
higher prediction accuracy than ANN, independent of the
type of descriptors used, the size of the training data sets,
and the algorithm employed for neural network training.
Although SVM outperformed the ANN classifiers with
regard to overall prediction accuracy, both methods were
shown to complement each other and the authors sug-
gested that a consensus approach would yield better
classification than either method individually. They also
reviewed the theory of SVM and neural network training.
Takaoka et al. adopted a novel method of distinguishing
drug-like compounds by capturing the collective experi-
ence of working chemists using a neural net and SVM
(50). Five chemists assigned a drug-like and “ease-of-
synthesis” score to each of 3,980 diverse compounds.
The resulting models were found to efficiently eliminate
compounds that were not drug-like and/or hard to syn-
thesize.

Solubility, partition and permeability models

The water solubility, logP and ability to penetrate bio-
logical barriers such as the blood-brain barrier (BBB) or
intestinal mucosa are important properties for drug candi-
dates. Neural networks have been very effective in build-
ing robust, predictive models for these properties,
although published work has suffered from a paucity of
training data for the latter two properties. Several general
reviews of solubility and partitioning modeling have
recently appeared. Taskinen and Yliruusi reviewed the lit-
erature describing neural network modeling of physico-
chemical properties of compounds from molecular struc-
ture. Properties such as logP, water solubility, boiling
point and vapor pressure have been modeled by several
research groups using different approaches and struc-
turally diverse large training sets. In most cases, the pre-
diction accuracy of models was close to the measure-
ment accuracy (51).

Solubility

Eros and colleagues presented a comprehensive
review of water solubility prediction methods. Multiple

Neural networks in ADME and toxicity prediction

linear regression (MLR) analysis, PLS and neural net-
works have all been employed to model aqueous solubil-
ity (52). Standard errors of prediction from neural network
models were typically 0.72 log S units. Huuskonen et al.
used neural networks to model the aqueous solubility of
211 drugs and related compounds representing acidic,
neutral and basic drugs of different structural classes
(53). Structural parameters used as inputs to the neural
network included electrotopological indices and topologi-
cal indices. They achieved a predictive r? value (squared
correlation coefficient between predicted and measured
outputs) of 0.86 and a standard error of prediction of 0.53
log S units for this smaller data set. Ran and coworkers
compared the revised general solubility equation (GSE)
with neural networks and MLR methods for their ability to
model aqueous solubility (54). They found the GSE and
ANN predictions to be more accurate than MLR methods.
Although the GSE used only two parameters and no train-
ing set, its average absolute error was only 0.1 log units
larger than that of the neural net model. Liu and So
reported a simple aqueous solubility model based on
seven 1D and 2D descriptors and a neural network (55).
The model achieved a prediction error of 0.72 log S units
for a diverse set of 1,312 organic compounds, compara-
ble with the estimated experimental uncertainty of no less
than 0.5 log S units. Manallack and coworkers employed
BCUT (Burden, CAS and University of Texas) descriptors
(eigenvalues of modified molecular connectivity matrices)
to discriminate compounds with poor aqueous solubility
(56). Approximately 95% of compounds were classified
correctly using this filter. Bruneau employed a very
diverse data set consisting of literature and proprietary
compounds and a Bayesian neural network, to build a
robust model of solubility (57). About 100 descriptors
emphasizing surface properties were used in the models.
The importance of the descriptors to the models was
established by means of a modified Gram-Schmidt or
ARD procedure. Todeschini’s research group has devel-
oped a comprehensive computer program for personal
computers called DRAGON which is capable of calculat-
ing almost 2,000 common molecular descriptors useful
for prediction of solubility and other properties (58).

LogP prediction

LogP was one of the earliest physicochemical proper-
ties of molecules found to be important in drug action and
ADMET properties. It is one of the most extensively mod-
eled properties, given its importance in many biological
systems.

Eros et al. critically reviewed the published methods
of logP prediction and compared the predictive power of
commercial software packages and their recently devel-
oped automatic QSPAR program (59). They trained their
models on a very diverse set of 625 known drugs and
drug-like molecules with experimentally determined logP
values and 78 “outliers”, compounds that were not well
predicted by traditional methods. Tetko reported modeling
logP using an associative neural network, a combination
of an ensemble of backpropagation neural networks and
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k-nearest neighbor clustering techniques (60). An asso-
ciative neural network has a memory, and if new data
become available, the network improves its predictive
ability without the need to retrain the neural network
ensemble. According to Tetko, this feature of the method
dramatically improves its predictive ability over traditional
backpropagation neural networks. Devillers et al. also
employed a backpropagation neural network and a train-
ing set of 7,200 chemicals to build a predictive model of
logP (61). Their most predictive model had excellent sta-
tistics, with a training set root mean-squared error
(RMSE) of 0.37 log units and an r? of 0.97, and a test set
RMSE of 0.39 and r? of 0.98.

Huuskonen et al. reported several studies evaluating
the efficacy of atom-type E-state indices for logP predic-
tion using large, diverse training sets (62). They com-
pared MLR analysis and neural networks as mapping
tools to generate logP models and found that both meth-
ods provided reliable logP estimates, although neural net-
works provided better prediction ability for training and
test sets. For the best models, r?> and cross-validated
RMSE were 0.90 and 0.46 log units, respectively. When
the model was used to predict logP values for a com-
pletely independent test set, a predictive r? of 0.94 and
RMSE of 0.41 log units were obtained. The authors attrib-
uted the improved predictive ability of ANN to the nonlin-
ear properties of this method. Schaper and Rosado
Samitier also used neural networks to recognize structur-
al features important for logP models (63). Using a three-
layer network with three neurons in the hidden layer and
indicator (binary) variables to indicate the presence or
absence of atom types and bond types in molecules, a
standard error of 0.25 log units was obtained for a small
training set. For a test set of 50 similar compounds, the
standard error of prediction was 0.66 log units.

Blood-brain barrier (BBB) partition

Predicting BBB partitioning is clearly important for tar-
geting new drug candidates to the central nervous system
(CNS) for neurological targets, or away from the CNS if
the candidates have peripheral targets and CNS effects
are to be avoided. The ability to build robust, predictive
models of BBB partitioning has been hampered by the
paucity of experimental data to train models. Conse-
quently, all reported models are based on small, usually
very similar, training sets with limited predictive power.

Doniger and colleagues used two different machine
learning algorithms, a backpropagation neural network
and a support vector machine (SVM), to predict the BBB
permeability of different classes of molecules (64). Both
algorithms were trained on a data set of 179 CNS-active
molecules and 145 CNS-inactive molecules. Molecular
descriptors included molecular weight, lipophilicity, hydro-
gen bonding capacity and other variables likely to modu-
late the ability of a molecule to diffuse through a mem-
brane. In this classification problem (permeable/not
permeable), the SVM outperforms the neural network,
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correctly predicting an average of 81.5% of molecules in
the test sets, compared with 75.7% for the neural net-
work. Fu et al. also used a neural network model to quan-
titatively predict log BBB from structural parameters such
as molecular volume, atomic charges of oxygen and
nitrogen hydrogen bond acceptors (65). For a training set
of 56 compounds and a test set of 5 compounds, RMSE
values of 0.24 and 0.26 log units were obtained, respec-
tively. Winkler and Burden used a Bayesian neural net-
work to build a robust model of BBB partitioning using a
data set of 106 diverse compounds (66). They compared
three types of molecular descriptor — property-based,
topographical and eigen value — for efficacy in modeling
log BBB. The results showed that the property-based
descriptors were best for training the model, consistent
with other reported observations. However, all three
classes of molecular descriptor had similar abilities to
predict log BBB of an independent test set. The models
could account for approximately 65% of the variance, with
the remainder likely to be experimental error. Standard
errors of prediction were 0.55 log units.

Human intestinal absorption (HIA)

The ability of a molecule to be absorbed through the
human intestinal cell lining is an important property for
potential drug candidates. Measuring this property is
costly and computational models that estimate percent
human intestinal absorption (%HIA) are attractive alter-
natives. The ability to develop better modeling tools for
HIA and to build robust models is also limited by the lack
of large, diverse data sets in the public domain. Podlogar
and Muegge have published a review of computational
methods for the estimation of intestinal absorption (67).

Agatonivic-Kustrin and coworkers developed a neural
network-based model of %HIA using 86 drug compounds
and their experimental intestinal absorption values (68).
They used constitutional, topological, physicochemical,
geometrical and quantum chemical descriptors. A super-
vised neural network with radial basis transfer function
was used to build the model. A genetic algorithm was
used to select the most important descriptors so that
overfitting was controlled. Their 15-descriptor neural net
model had a training set RMSE of 0.59 and a test set
RMSE of 0.90. The results suggested that lipophilicity,
conformational stability, polarity and hydrogen bonding
have the largest impact on intestinal absorption. Wessel
et al. also studied a set of 86 drug and drug-like com-
pounds with measured values of %HIA taken from the lit-
erature and developed a model (69). They used a neural
network coupled with a genetic algorithm to determine the
best descriptors and network architecture. The best
model had an RMSE of 9.4 %HIA units for the training set,
19.7 %HIA units for the cross-validation set and 16.0%
HIA units for an external test set. Niwa used 2D molecu-
lar descriptors and two variants of a radial basis function
neural network to model %HIA in the same data set of 86
compounds studied by Wessel (70). The radial basis
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function variants used were the regression neural net-
work and a probabilistic neural network, both of which
performed well in modeling %HIA values. The RMSE was
22.8 %HIA units for an external test set for the regression
neural net model and 80% of the external test set was
correctly classified for a probabilistic neural network
model.

Fujiwara et al. used a combination of descriptors
derived from quantum chemical calculations and a neural
network to predict Caco-2 cell permeability from structure
(71). For a training set of 87 compounds, the dipole
moment, polarizability, sum of charges on nitrogen and
oxygen atoms, and hydrogen atoms bonding to het-
eroatoms were calculated as descriptors. A backpropa-
gation neural network was used to build the model for
predicting Caco-2 cell permeability. A cross-validation
procedure revealed that the neural network model had
good predictability, with a predictive RMSE of 0.507 log
units compared with RMSEs of 0.584 and 0.568 log units
for linear and quadratic regression models, respectively.
In a similar study, Gohlke and colleagues employed a
combined simulated annealing/neural network approach
to derive a model for human intestinal absorption for
drugs and drug-like compounds with an overall error of
prediction in the range of the experimental error (72).

Pharmacokinetic/pharmacodynamic models

As Saxena and Schaper have pointed out, the quan-
titative analysis and physicochemical description of time-
and dose-dependent in vivo drug effects are problematic
(73). The observed effects depend on both pharmacody-
namics and pharmacokinetics, factors that are influenced
in different ways by physicochemical properties of drugs.
In vivo effects of drug series are governed by highly non-
linear, extremely complicated and often unknown rela-
tionships. Neural networks are good candidates for mod-
eling these types of properties. Gobburu and Chen have
summarized the advantages of the flexible, nonlinear,
model-independent properties of neural networks in mod-
eling pharmacokinetic (PK)/pharmacodynamic (PD) data
(74). Neural networks are flexible enough to accurately
predict PD profiles for a wide variety of PK/PD relation-
ships and can accurately predict PD profiles without
requiring any information regarding the active metabolite.

Saxena and Schaper studied in vivo hypotensive
effects of drugs in cats using a neural network to model
the unknown nonlinear relationship between input vari-
ables and observed effect values (73). Although each
drug was applied at only two doses and the effect was
observed at only a few time points, the neural network
was able to predict the complete time-activity profiles
(PK) for the drugs. However, complete dose-response
curves could not be obtained due to insufficient applied
dose data. Opara et al. also used neural networks to pre-
dict PK responses of individuals in drug bioequivalence
studies (75). Efficient prediction of the responses allows
identification of deviations from typical population values.

Neural networks in ADME and toxicity prediction

The neural net model prediction errors of PK parameters
for verapamil were comparable to the observed differ-
ences between formulations in the bioavailability study. In
another neural network modeling study, this same group
used data from three distinct bioequivalence studies of
oral verapamil products involving a total of 98 subjects
and 312 drug applications. The average absolute predic-
tion errors for the PK parameters area under the concen-
tration-time curve (AUC), peak plasma concentration
(C,,ay) @nd time to reach peak plasma concentration (t
were 30.5%, 39.6% and 30.7%, respectively (76).

Hussain explored the properties of neural networks
for predicting in vivo drug concentration-time profiles and
for multidimensional interspecies scaling of PK parame-
ters. These models provided adequate generalization
although they were trained with limited examples. The
availability of animal data in at least four different species
was a major limitation in the modeling (77).

Turner and coworkers used radial basis functions and
theoretical descriptors to develop a quantitative structure-
PK relationship for structurally diverse drugs (78, 79). All
models were trained on data from 137 compounds, test-
ed with a set of 15 compounds and evaluated for predic-
tive ability with an additional 15 compounds. The PK
parameters modeled were clearance, fraction bound to
plasma proteins and volume of distribution. The best
model had training and test set r? values of 0.736 and
0.897, respectively. In general, predictions from the
model agreed well with experimental values.

Veng-Pedersen and Modi reviewed the role of neural
networks in modeling biological systems (80). They point-
ed out their particular suitability for dealing with PK and
PD systems, especially in cases of multivariate PK/PD
population kinetics when the systems are so complex that
modeling by a conventional structured model-building
technique is very difficult. They demonstrated the appli-
cation of neural network modeling to PD by predicting the
CNS activity of alfentanil. The relative prediction perfor-
mance of the neural network was 66%, which indicates
an excellent prediction given the intrinsic fluctuations in
the effect variable. Haidar et al. used neural networks to
develop a predictive population PK/PD model for
repaglinide, an oral hypoglycemic agent (81). PK/PD and
demographic data from a dose-ranging phase Il trial were
divided into a training set and test set. PK and PK/PD
models were constructed and compared to naive averag-
ing and randomly generated numbers. These authors
concluded that neural networks offer a quick and simple
method for predicting PK and PD properties, for identify-
ing significant covariates and for generating hypotheses.

Ritschel and Akileswaran used a backpropagation
neural net with a combination of physicochemical proper-
ties to model animal PK parameters (82). Fourteen net-
work models, using a variety of input variables, were
developed. Protein binding, partition coefficients, dissoci-
ation constants and the total clearance and volume of dis-
tribution of 41 drugs were measured in rats and dogs and
then used for prediction of human total clearance and
volume of distribution. Drugs with a logP < 1.17 showed

max)
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a predictability of 63.4% for total clearance and 41.5% for
volume of distribution.

Moon and Smith developed a preliminary PD model
for dosing of the hydroxymethylglutaryl CoA-reductase
inhibitors simvastatin and atorvastatin using a neural net-
work (83). Lipid panels from 17 patients were used as
inputs to the model, and doses of simvastatin or atorvas-
tatin that achieved those lipid results were the outputs.
The dose predictions were compared with the actual
doses given by the hospital. The neural network model
based for one data set predicted a dose that was within
95% of the actual dose 7 of 12 times and predicted use
of the drug actually used 13 of 19 (68.4%) times. The
model based on a second data set was less successful,
predicting that the drug was actually used 10 of 17
(58.8%) times, but the predicted doses were always sub-
stantially less than the dose actually used. The neural
network model for the dosing of simvastatin and atorvas-
tatin could predict appropriate dosing but inclusion of
other factors (e.g., age, body weight, sex) and a larger
sample size may be necessary for development of a more
accurate model.

Wajima et al. compared the performance of three
types of regression methods — MLR, PLS and neural net-
works — to predict human clearance of drugs (84). The
training set consisted of clearance data for rats, dogs and
humans for 68 drugs. Molecular weight, logP and the
number of hydrogen bond acceptors were used as
descriptors. Schneider et al. also used several statistical
regression models and neural networks to predict the
hepatic drug clearance in humans from in vitro (hepato-
cyte) and in vivo PK data (85). The results indicated that
human hepatocyte data was the best predictor, followed
by rat hepatocyte data. They concluded that the most
cost-effective and accurate approach to achieve satisfac-
tory predictions in humans is to use a combination of
in vitro clearance in human and rat hepatocytes. The
main limitations of the approach were related to the limit-
ed amount of experimental data available.

Metabolism modeling

Human hepatocyte high-throughput assays are now
available to screen drug candidates efficiently, providing a
good source of in vitro data for modeling of phase |
metabolism. Similar high-throughput methods are not as
well developed for phase Il metabolism. However, model-
ing the metabolic fate of compounds is very difficult, part-
ly because of the combinatorial explosion of possible
metabolites that occurs in typical decision tree- and rule-
based systems.

Holmes et al. reported that high-resolution proton
NMR spectroscopy of biofluids and tissues coupled with
backpropagation and probabilistic neural networks can
provide complementary data for use in in vivo toxicologi-
cal screening of drugs (86). The authors used NMR spec-
troscopy to characterize the time-related changes in the
urinary metabolite profiles of rats treated with 13 model
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toxins and drugs which predominantly target the liver or
kidney. The data consisted of 1,310 samples, of which
583 were used in a training set and the remaining 727 in
a test set. The probabilistic neural network model gave
superior results to the backpropagation neural network
model, distinguishing 13 classes of toxicity with better
than 90% accuracy.

Phase | metabolism

Vermeulen reviewed the role of CYP in important bio-
transformations of drugs and other xenobiotics (87). The
paper summarized various computational approaches
used to rationalize and predict the activity and substrate
selectivity of CYP, as well as the possibilities and limita-
tions of these approaches. Since human CYP2D6 is one
of the most important drug-metabolizing enzymes, this
isozyme was chosen as a focus of the review. The
authors concluded that no one computational approach is
capable of rationalizing and reliably predicting metabolite
formation by CYP2D6, and a consensus of several meth-
ods is therefore desirable.

Zuegge and coworkers reported the development of
computational PLS- and neural network-based prediction
systems for binary classification of drug-drug interaction
liability caused by CYP3A4 inhibition (88). The system
was trained using IC, values for 311 molecules. The best
model correctly predicted 95% of the training data and
90% of a semi-independent validation data set. This
group also reported a study of the comparative prediction
accuracy of several different mathematical models for
human hepatic metabolic clearance: allometric scaling,
physiology-based direct scaling, empirical in vitro-in vivo
correlation and supervised neural networks (89). The
study used a publicly available data set of 22 extensively
metabolized compounds. The latter three modeling
approaches yielded r? values > 0.77, compared with r?
values < 0.44 using the other method. The percentage of
successful predictions ranged from 55% to 68%.

Molnar and Keseru also adopted a neural network
approach to identify potential CYP3A4 inhibitors (90).
They used training data from the Genetest database and
2D molecular fingerprints as descriptors. The neural net
model correctly identified at least 89% of CYP3A4
inhibitors in the validation set. Korolev et al. used a
Kohonen SOM to study CYP-mediated metabolic trans-
formations of xenobiotic molecules (91). They compiled a
database of 2,200 compounds comprising known human
CYP substrates, products and nonsubstrates for 38
enzyme-specific groups. They determined the CYP-medi-
ated metabolic reactions most typical for each group and
examined the substrates and products of these reactions.
They used an SOM neural network together with physico-
chemical descriptors to produce maps visualizing
isozyme-specific groups of substrate molecules.

Vermeulan has suggested that when effective links
with other new and recent developments such as bioin-
formatics, neural network computing, genomics and
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proteomics are more mature, in silico rationalization and
prediction of drug metabolism by CYPs is likely to
become one of the key technologies in early drug discov-
ery and development processes (87).

Phase Il metabolism

Modeling of phase Il metabolism is much less estab-
lished than for phase |, due partly to the lack of adequate
data sets. Sorich et al. conducted a modeling study
of 12 isoforms of human UDP-glucuronosyltransferase
(UGT), an enzyme superfamily involved in the metabo-
lism of drugs, nondrug xenobiotics and endogenous
compounds (92). They compared PLS discriminant analy-
sis, Bayesian-regularized neural networks and SVM
methodologies for their ability to classify substrates and
nonsubstrates. Simple 2D descriptors were used to char-
acterize molecules in the training and test sets. The best
models showed predictive ability for all UGT isoforms,
with 5 of 12 isoform test sets exhibiting > 80% prediction
accuracy. In a recent paper, this group reported an exten-
sion of this work in which quantum chemical density func-
tional theory descriptors related to the mechanism of the
UGT enzyme superfamily were approximated by elec-
tronegativity equalization methods (93). SVM methods
combined with a consensus approach yielded substantial
improvements in the predictive ability of the glucuronida-
tion models. The success of pattern recognition methods
in modeling this major phase Il metabolic process should
lead to further research activity by computational scien-
tists in this important area.

Modeling of toxicity, mutagenicity
and carcinogenicity

There has been significant activity in the application of
neural networks and other artificial intelligence methods
to toxicity modeling, driven in large part by environmental
toxicology. Schultz and colleagues reviewed QSAR
approaches to modeling toxicology in both environmental
and human health areas since 1995 (94). They compared
the rules-based expert systems with self-organizing
dynamic algorithms such as neural networks. They also
summarized the current status of modeling human health
effects, including mutagenesis and carcinogenesis,
developmental toxicity, skin sensitization, and skin and
eye irritation.

Cardiac toxicity (hERG)

Agents that cause hERG (human ether-a-go-go relat-
ed gene) channel blockade are a major concern in drug
design, as they can cause sudden cardiac death. Roche
et al. have reported a computer-based method for predic-
tion of the hERG potassium channel affinity of organic
compounds (95). They applied several techniques to
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modeling SAR in hERG: substructure analysis, self-orga-
nizing maps, principal component analysis, PLS and
supervised neural networks. The neural network model
was the most accurate prediction system, correctly clas-
sifying 93% of the nonblocking agents and 71% of the
hERG channel blockers. The authors advocated using
the neural network model as a virtual screening method
for chemical library focusing and combinatorial library
design.

Acute toxicity

The measurement of toxic effects is time-consuming
and expensive, providing an impetus to develop fast com-
putational methods to predict toxic effects from the mole-
cular structure. Predicting toxic effects is challenging
because there are usually multiple toxic mechanisms
involved. Feng and colleagues compared several combi-
nations of different chemical descriptors and popular sta-
tistical methods for their efficacy in predicting toxicity (96).
They employed recursive partitioning, neural networks
and partial least squares to model the response surface.
All of the methods and descriptors worked to a degree,
but the authors suggest that certain descriptors work bet-
ter with specific statistical methods than with others, indi-
cating the need for the development of better methods.

Mutagenicity/genotoxicity

Valkova et al. reported the application of a counter-
propagation neural network to modeling the mutagenicity
of 95 aromatic and heteroaromatic amines collected from
the literature (97). The molecules were represented by
topological, geometrical and quantum chemical descrip-
tors. Predictive ability of the final model was excellent,
with training and test set r? values of 0.98 and 0.82,
respectively. Validity of the best model was confirmed by
a randomization test. The authors suggested that neural
networks are powerful tools for modeling structure-
mutagenicity relationships. Vracko et al. also analyzed a
data set of 95 aromatic amines for their mutagenic poten-
cy using a counterpropagation neural network, and close-
ly related descriptors, to develop models to predict muta-
genicity (98). In this case, the models produced r? values
between 0.65 and 0.75, comparable with models
obtained by linear methods. The authors also reported an
analysis of the data using SOM, which identified clusters
of structurally similar compounds. In a related study, this
group modeled 12 trimethylimidazopyridine isomers with
varying mutagenic potency toward 2 strains of Salmonella
(99). Quantum chemical and 3D descriptors and a coun-
terpropagation neural network were used to build the
models. They reported predicted mutagenicities for two
isomers that have not yet been synthesized.

Karelson and coworkers modeled Ames test genotox-
icity of aromatic and heteroaromatic amines using the
Chebyshev polynomial expansion and neural networks
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(100). They used quantum chemical molecular descrip-
tors to compare the nonlinear models with linear models
from MLR analysis and to determine the chemical fea-
tures that most influence mutagenicity.

Bahler et al. reported a preliminary study that used
rodent carcinogenicity data to build in silico models aimed
at supplementing the costly and time-consuming labora-
tory tests for carcinogenicity (101). Their models took the
form of decision trees, rule sets, neural networks, rules
extracted from trained neural networks and Bayesian
classifiers. Their training set was obtained from rodent
carcinogenicity bioassays conducted by the National
Toxicology Program on 226 test articles. Descriptors used
included physicochemical parameters, structural alerts,
Salmonella mutagenicity assay results, subchronic
histopathology data, and information on route, strain and
sex/species for 744 individual experiments. They con-
cluded that no single carcinogenicity model would likely
be adequate and that a consensus of several methods
would give the best predictions. Brinn et al. built a neural
network-based classification model from a large, struc-
turally heterogeneous data set of mutagens and nonmu-
tagens (102). Substructural data composed of 1,280 frag-
ments were used as inputs. The best models
misclassified only 11% of the test set and 6% of the train-
ing set. The authors analyzed the output of the neural net-
work model’s hidden layer to discern clusters of muta-
gens and nonmutagens, demonstrating how the network
was classifying the data.

Lindquist and colleagues reported a method of detect-
ing new drug safety signals using an international data-
base of more than 2 million case reports from the World
Health Organization Program for International Drug
Monitoring (103). They developed a new Bayesian logic
data mining signaling process, implemented using a
BCPNN, to aid clinical review of the data. The study test-
ed the predictive value of the BCPNN in new signal detec-
tion by comparison with literature sources and with an
established signaling procedure. The BCPNN method
detected signals with a positive predictive value (proba-
bility that a positive prediction is correct) of 44% and a
negative predictive value (probability that a negative pre-
diction is correct) of 85%. The authors concluded that the
BCPNN approach had a high and promising predictive
value in identifying early signals of new ADRs.

Delivery

There has been recent and promising activity in the
application of neural networks to formulation and con-
trolled-release problems. Although outside the scope of
this review, a brief summary of key review articles is pro-
vided.

Formulation

Agatonovic-Kustrin et al. developed a colloidal
dosage form for the oral delivery of rifampicin and iso-
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niazid in combination with the aid of neural network data
modeling (104). Data from 20 pseudoternary phase trian-
gles containing miglyol 812 as the oil component and a
mixture of surfactants or a surfactant/cosurfactant blend
were used to train, test and validate a neural net having
radial basis function network architecture. The best model
successfully predicted the microemulsion region as well
as the coarse emulsion region, but failed to predict the
multiphase liquid crystal phase for cosurfactant-free sys-
tems. A novel microemulsion formulation capable of deliv-
ering rifampicin and isoniazid in combination was creat-
ed, and the model assisted in understanding the process
of microemulsion formation and stability within
pseudoternary colloidal systems. McCall and coworkers
have also employed neural networks as a tool in the iter-
ative process of formulation development (105). They
used the neural network to develop relationships between
formulation variables, observed in vitro dissolution data,
and simulated plasma drug concentration-time profiles.

Controlled release

Controlled-release drug delivery systems offer impor-
tant advantages over conventional dosage forms.
However, there are great challenges in efficiently devel-
oping controlled-release drug delivery systems due to
their complexity. Traditionally, a statistical response sur-
face method is employed to develop and formulate con-
trolled-release dosage forms. Sun et al. have reviewed
the application of neural network methods to the design of
controlled-release drug delivery systems (106).

Reis and colleagues used neural networks to design
two controlled-release systems, namely hydrocortisone in
a biodegradable matrix and rhodium(ll) butyrate com-
plexes in a bioceramic matrix (107). The models simulat-
ed release profiles as a function of fundamental proper-
ties such as diffusion coefficient, saturation solubility, drug
loading and the height of the device. The neural network
could essentially quantitatively predict ideal experimental
outcomes and this approach was found to be useful for
the efficient design of controlled-release systems. Lim
and colleagues also used a neural network-based intelli-
gent learning system for the prediction of drug release
profiles in transdermal iontophoresis (108). They
employed a Gaussian mixture model to model experi-
mental data and predict the drug release profiles of other
experiments not used in the training. The results demon-
strate that the Gaussian mixture model can be employed
as a useful, intelligent tool for the prediction of time-series
profiles in iontophoretic delivery systems.

Summary and future directions

It is clear that the robust, nonlinear, model-free, uni-
versal approximator properties of neural networks make
them very useful tools for modeling a wide range of sys-
tems relevant to drug development and delivery. The
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applications of these methods in the study of ADMET
processes and for building useful, predictive models will
increase substantially in the future. The main limitations
to more rapid progress in this area are not intrinsic to the
method, but rather due to the lack of large, diverse data
sets accessible to researchers developing new methods
of modeling. The efficiency of current molecular descrip-
tors and parsimonious methods for choosing the best set
for a given modeling problem are also aspects to be
improved. These areas are active research projects for
most of the relatively small number of research groups
who develop new modeling methodologies and models.
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